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Analytical Solution for the American 
Options with Stochastic Volatility Using 

Barrier Options 
Abstract 

This paper extends the work of Heston (1993) and integrates the Richardson 
extrapolation technique and Barrier options framework for developing analytical 
solution for stochastic volatility American options. By using large sample least-square 
Monte Carlo Simulations as the benchmarks, we prove that our model is accurate and 
efficient from the results of numerical experiments. Finally, we show that our stochastic 
volatility American option model is superior in pricing than the traditional constant 
volatility American option model from the empirical tests of Taiwan’s put warrant 
market. 

Keywords: analytical solution, American option, stochastic volatility, barrier option 

1. Introduction 

Unlike the European, American options have a higher value because holders are allowed 
to exercise them at any point of time until the expiration date. Pricing an American call 
option is easy because it has the same value as a European when no dividends are paid. 
However, pricing an American put option is extremely complex, stemming from the fact 
that the optimal-exercise policy on which the American option depends is unknown. 
Though numerical methods can be used for the pricing, the results obtained may not 
counteract the dynamic market change because they are time consuming and 
computationally more demanding. In contrast, analytical solutions are accurate and 
efficient formula forms which can intuitively describe phenomena such as monotone 
and convergence that cannot be proved by numerical methods. Hence, deriving an 
analytical solution for American put options is advantageous. 

Much literature existing on pricing and hedging American options assumes volatility to 
be constant. However, we should reconsider such assumption since empirical studies 
have actually shown that the volatility in the real world is stochastic. Therefore, we 
assume that a more reasonable way of evaluating American put options is to relax the 
restriction of constant volatility. 

The purpose of this paper is to derive an analytical solution for American put options 
with stochastic volatility by using barrier options. Barrier options are contingent claims 
whose value depends upon their behavior at various boundaries (Ingersoll (1998)). A 
down-and-out put option is one of the prototypical barrier options that will expire if the 
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stock price ever falls below the knock-out barrier. Since American options are similar to 
barrier options with the exercise boundary treated as the barrier and the payoff as the 
rebate, we utilize such similarity to develop a stochastic volatility discrete 
down-and-out put option model under the Heston (1993) framework. The model is 
further modified into a stochastic volatility discrete American put option. Then, 
Richardson extrapolation is applied to obtain the analytical solution.  

To appraise the pricing performance of our model, numerical analyses are conducted to 
verify the accuracy in comparison with large sample least-square Monte Carlo 
Simulations (LSM). The encouraging results show that our model is accurate in pricing. 
In addition, we observe the difference in option price between our stochastic volatility 
model and the traditional constant volatility model as the variance increases. The 
obvious difference lies between the two models has proved that it is relatively 
impractical to apply constant volatility in the past. Empirical analyses are also 
performed on Taiwan’s put warrants. It is evident that stochastic volatility model is 
indeed more realistic in the actual market. Therefore, our derived model is a practical 
tool for the option practitioners. 

2. Literature Review 

2.1 Stochastic Volatility 

Hull and White (1987) are the first to suggest using the idea of stochastic volatility to 
relax the constant volatility assumption in Black-Scholes (1973) model. In Hull and 
White (1987) model, the stock price and the asset volatility follow their respective 
diffusion process. The greatest restriction is the zero correlation between both. The 
volatility of the model adopts the lognormal process and obtains the power series 
approximation of the European option. Since then, stochastic volatility has been widely 
paid attention to. 

On the other hand, Stein and Stein (1991) adopt a different viewpoint. By obeying the 
mathematical Ornstein-Uhlenbeck process and using a separate numerical integration, a 
closed-form solution is derived. However, this model still fails to relax the unreasonable 
assumption of no correlation between the stock price and the volatility. 

Of all, Heston (1993) model makes the most contribution. Heston (1993) describes the 
volatility of the underlying asset as a dynamic one by using square root model and 
derives a closed-form solution for European options. Heston (1993) model uses Fourier 
transforms technique and characteristic function to calculate the probability of 
in-the-money when the option reaches its expiration date. The stock price diffusion 
process of Heston (1993) is identical to Black-Scholes (1973) while the formula form of 
the closed-form is similar except for the volatility that changes with time. The 
allowance of correlation between the stock price and the volatility in Heston (1993) 
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model is crucial because mutual influence is supposed to exist between these two 
variables theoretically. Therefore, we extend Heston (1993) model for the stochastic 
volatility calculation since it is more conformed to the real world status. 

2.2 Analytical Solutions 

Three approaches are adopted in the pricing of American options. The first approach is 
using the integral method to calculate under the risk neutral probability measure (Geske 
and Johnson (1984)). However, it can be computationally time consuming when one 
more exercisable is added for accuracy. The second approach is seeking solution 
directly from Black and Scholes (1973) partial differential equation (PDE) 
(Barone-Adesi and Whaley (1987)). Although BAW (1987) approximation is fast, the 
serious drawback of it is the lack of accuracy especially under long maturity options. 
The third approach is the use of down-and-out put option (Ingersoll (1998); Sbuelz 
(2004)). Barrier options not only determine the final stock price on the expiration date, 
but also consider whether the options hit the barrier before the expiry time. A 
down-and-out put option is valuable when the stock price falls below the strike price 
and does not hit the barrier. American options possess similar characteristic as barrier 
options. When both options hit a certain level, the value will begin to change. Hence, 
Ingersoll (1988) and Sbuelz (2004) add a rebate to the down-and-out put option model 
in order to satisfy the immediate exercise value when the stock price hits the barrier. 
Unfortunately, these models are derived under constant volatility. Therefore, we aim to 
modify the down-and-out put option in the derivation of the analytical solution for 
American options. 

3. The Model 

We intuitively think that a stochastic volatility down-and-out put option model can be 
derived by developing a down-and-out put option model under the Heston (1993) 
framework. However, difficulty arises because the accuracy of the down-and-out 
probability cannot be obtained correctly under Heston (1993) model; thus obstructing 
the subsequent development. Therefore, we used another alternative to circumvent the 
problem. With reference to Griebsch and Wystup (2008) in developing the model for 
fader option evaluation, it has directed us with a solution. Under the same Heston (1993) 
framework, Griebsch and Wystup (2008) used the characteristic function proposed by 
Shepard (1991) to calculate discrete probability distribution. This is equivalent to 
calculating a discrete down-and-in probability. If this probability is obtained, we can 
develop a discrete down-and-in put and eventually a stochastic volatility down-and-out 
put option model. When an immediate exercise value is added, the model will become a 
discrete stochastic volatility American put option. Then, we can apply the Richardson 
extrapolation technique to approach and obtain the analytical solution. 



 

3.1 Heston Model 

The diffusion process of the stock price and the variance follows the setting of Heston 
(1993) stochastic volatility model 

1 dS S dt S dzμ υ= +                            (1) 

( ) 2 d dtυ κ θ υ σ υ= − + dz                       (2) 

where  is the rate of mean reversion, κ θ  is the long term variance and σ  represents 
the volatility of variance. They are all constant parameters.  and  are two 

correlated Brownian motions. 
1z 2z

ρ  is the correlation coefficient of these two Brownian 
motions. In equation (1), the stock price  is a geometric Brownian motion and its 
volatility changes with time. In equation (2), current variance 

S
υ  follows the square 

root process (Cox-Ingersoll-Ross (1985) process). 

Similar to Black-Scholes (1973) formula, Heston (1993) guessed the solution form of 
this European call with stochastic volatility 

( ) 1, , rTC S K T SF Ke F−= − 2                           (3) 

( ) ( )
0

exp ln1 1 Re  
2

j
j

iu K u
F du

iu
ϕ

π
∞ ⎡ −

= + ⎢
⎣ ⎦

∫
⎤
⎥              (4) 

where j  =1, . 2 K  is the strike price,  represents the risk-free interest rate,  

denotes the time to maturity, 

r T

[ ]Re ⋅ stands for real part, function  is  the 

characteristic function (Griebsch and Wystup (2008)).

( )j uϕ

jF  is the conditional probability 

that the option expires in-the-money. The form of stochastic volatility European put can 
be obtained through put-call parity. 

( ) ( ), , , ,P S K T C S K T Ke SrT−= + −                    (5) 

3.2 Discrete down-and-out put option with stochastic volatility 

In Griebsch and Wystup (2008) paper, the probability in the fader option is calculated 
by taking the probability of stock price under high barrier H minus the probability of 
stock price under low barrier L. By just considering the probability under low barrier L, 
it is equivalent to obtaining the discrete down-and-in probability. With it, a discrete 
stochastic volatility down-and-in put option can be developed. Below is the illustration 
of the discrete down-and-in probability calculation. 

With the n dimensional characteristic function and the examples and principle provided 
by Shephard (1991), we are able to calculate this probability distribution on our own. 
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for  ( : real part, 1, 2j = [ ]Re ⋅ [ ]Im ⋅ : imaginary part). ( )Prob j ⋅ is the probability under 

different measures. 

Through the probability distribution, the discrete stochastic volatility down-and-in put 
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option (refer to equations (10) and (19)) can be calculated with an extension of three 
discrete exercisable time points. With in-put parity, a discrete stochastic volatility 
down-and-out put option can hence be formed. 

3.3 A discrete American put with stochastic volatility 

To modify the discrete stochastic volatility down-and-out put model (refer to equations 
(11) and (20)) into a discrete stochastic volatility American put (Bermuda option), an 
immediate exercise value has to be added. For American put options, the time for 
optimal early exercise is when the stock price falls below or hits the critical price. The 
concept of the critical price is the same as the barrier. In barrier options, when the stock 
price hits the barrier, the value of the option will be zero. However, for American 
options, when the stock price hits the critical price, an immediate exercise value can be 
obtained. To avoid a null value, we add this immediate exercise value to the discrete 
stochastic volatility down-and-out put option model so that a discrete stochastic 
volatility American put (Bermuda option) can be formed. 

3.3.1 The Value of Immediate Exercise 

For American put options, the immediate exercise value (refer to equations (12), (21) 
and (22)) is the difference between the strike price and the critical price. It can be 
calculated by taking the critical price as the strike price.  

In Black-Scholes pricing formula ( ) ( )2

2

ln / / 2S K r T
d

T

σ

σ

+ −
= , ( )2N d  represents the 

probability of in-the-money condition, and the stock price is more than the strike price 
on the expiration date. We intuitively think that by replacing the strike price K  with 
the critical price in ( )ln /S K , the obtained probability of ( )1N d  and  will 

become the probability of in-the-money calculated with the critical price instead of the 
strike price.  

( 2N d )

3.3.2 The Critical Price of the Model 
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Critical price S  is an important element when pricing stochastic volatility American 
put options because it represents the optimal exercise time. For American options, the 
optimal-exercise policy can be presented as the exercise boundary in price-time space. 
The boundary partitioned the space into a hold region and an exercise region. In a put 
option, early exercise occurs when the stock price falls below or hits the critical price, 
and there should be a holding when it is above the critical price. Therefore, critical price 
can be determined when the immediate exercise value is equivalent to the holding value. 
This can be illustrated in a simple put option below: ( ), ,K S P S K T− =  for some 

S S=  and any T . An initial value of the critical price will be given first. This value 
also represents the initial stock price. Then, substitute the given value into the model 



 

and solve it iteratively with the bisection method until the immediate exercise value is 
equivalent to the holding value. The result obtained will hence be the critical price. 

3.4 Analytical Solution for American Put with Stochastic Volatility 

After obtaining a discrete stochastic volatility American put model (Bermuda option) 
and a calculated critical price, three-point Richardson extrapolation is applied to 
evaluate American put options with stochastic volatility. 

Let  be a pure stochastic volatility European put that can only be exercised at 

expiration time  (Equivalent to equation (5)). 
1P

T

( )1 , ,P P S K T=                                  (9) 

Let  be a stochastic volatility down-and-in put. A barrier2 diP − H at time .  The 

option is valuable only if the stock price hits or falls below the barrier. When it comes 
to expiration time , the option must be valuable. 

/ 2T

T

( ) ( )
( ) ( )

2 2 / 2 1 / 2

2 1

Prob , Prob ,

       , ,

rT
di T T T T

rT

P Ke x H x K S x H x K

Ke F H K S F H K

−
−

−

⎡ ⎤ ⎡= ≤ ≤ − ≤⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎤≤ ⎦        (10) 

2 doP −  is a stochastic volatility down-and-out put and can be obtained: 

( ) ( )2 , , , , ,do diP S K T H P S K T P− −= − 2                   (11) 

Let  be a stochastic volatility European put. Expiration time be . The 

critical price is taken as the strike price at  so that the value of the put will be the 
immediate exercise value. 

2 exerciseP − / 2T

/ 2T

( )2 /, , / 2exercise TP P S S T− = 2                      (12) 

Let  be a stochastic volatility American put with. Early exercise can only be 

determined at time . (  is equivalent to Bermuda option) 
2P

/ 2T 2P

( ) ( )2 / 2 2 / 2 2, , , , , ,T do T exerciseP S K T S P S K T S P−= + −          (13) 

Since the maturity interval from  to T  is only a pure European put (see Figure 1), 
critical price 

/ 2T

/ 2TS  at  can be obtained by using bisection method to solve 

iteratively. 

/ 2T

( )/ 2 / 2 , , / 2T TK S P S K T− =                      (14) 
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Figure 1: The critical price / 2TS  at  / 2T

Let  be a stochastic volatility down-and-in put. There is a barrier 3 diP − H  at  

and  respectively. The option is valuable only if the stock price hits or falls 
below the barrier. It has to be valuable when it comes to expiration time  . However, 
this probability must be considered in detail in three cases:  

/ 3T

2 / 3T
T

1) The stock price hits or falls below the barrier at . However, the stock price 
does not hit at  and is above the barrier. When it comes to expiration time 

, it has to be valuable. 

/ 3T
2 / 3T

T

2) The stock price does not hit at and is above the barrier. However, it hits or 
falls below the barrier at . When it comes to expiration time , it has to be 
valuable. 

/ 3T
2 / 3T T

3) The stock price hits or falls below the barrier at both  and . When it 
comes to expiration time , it has to be valuable. 

/ 3T 2 / 3T
T

The above three conditions are all down-and-in put probabilities, so we can use the 
concept of set: 

( )
( ) (

( ) ( )

/3 2 /3

/3 /3 2 /3
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                    (15) 
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( ) (
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/3 2 /3
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Prob , ,

 Prob , Prob , ,
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j T T T

j T T j T T T

j j
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> ≤ ≤

= ≤ ≤ − ≤ ≤

= −

≤                    (16) 

( ) ( )/ 3 2 /3Prob , , , ,j T T T jx H x H x K F H H K≤ ≤ ≤ =                               (17) 

Thus, the probability of a down-and-in ( Prob j di− ) is the sum of the three conditions： 

( ) ( )
( )

/ 3 2 /3

/3 2 /3

Prob Prob , Prob ,

                Prob , ,
j di j T T j T T

j T T T

x H x K x H x K

x H x H x K
− = ≤ ≤ + ≤

− ≤ ≤ ≤

≤                       (18) 

for  1, 2j =

 8



 

3 diP − can be obtained： 

[ ] [ ]3 2Prob Probdi di diP Ke S− −= − 1
rT−

−                   (19) 

3 doP−  is a stochastic volatility down-and-out put and can be obtained： 

( ) ( )3 3, , , , , ,do diP S K T H H P S K T P− −= −                (20) 

Let  be a stochastic volatility European put. Expiration time be . The 

critical price is taken as the strike price so that the value of the put will be the immediate 
exercise value. 

31 exerciseP − / 3T

( )31 /3, , / 3exercise TP P S S T− =                      (21) 

Let  be a model of 32 exerciseP − 2 diP − . Expiration time be . The critical price at 

 is taken as the barrier, and the critical price at  be the strike price. The 
value of the put is the same as the immediate exercise value.  

2 / 3T

/ 3T 2 / 3T

( ) ( )
( ) ( )

32

2 /3 /3 2 /3 2 /3 1 /3 /3 2 /3 2 /3

2 /3 2 /3 1 /3 2 /3

 Prob , Prob ,
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rT
T T T T T T T T

rT
T T T T

P

Ke x S x S S x S x S

Ke F S S S F S S

−

−

−

⎡ ⎤ ⎡= ≤ ≤ − ≤⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎤≤ ⎦   (22) 

Let  be a stochastic volatility American put. Early exercise can only be determined 

at time  and  . (  is equivalent to Bermuda option)  
3P

/ 3T 2 / 3T 3P

( ) ( )3 /3 2 /3 3 /3 2 /3 31 32, , , , , , , ,T T do T T exercise exerciseP S K T S S P S K T S S P P− −= + −+         (23) 

Since the maturity interval from  to T  is only a pure European put (see Figure 
2), critical price 

2 / 3T

2 / 3TS  at  can be obtained by using the bisection method to 

solve iteratively. 

2 / 3T

                        ( )2 / 3 2 /3 , , / 3T TK S P S K T− =                     (24) 

 

Figure 2: The critical price /3TS  at and the critical price / 3T 2 / 3TS  at  2 / 3T
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The critical price /3TS  at  requires  model to solve because the maturity 

interval from  to T  is a representation of a  model itself. It can be exercised 

at either  or T . Hence, critical price 

/ 3T 2P

/ 3T 2P

2 / 3T / 3TS  can still be obtained by using the 

bisection method to solve iteratively. (see Figure 3) 

                    ( )/ 3 2 /3 2 /3, , 2 / 3,T TK S P S K T S− = T                    (25) 

Eventually, we derived , and . By applying the three-point Richardson 

extrapolation to approach (Geske and Johnson (1984)), we can obtain the analytical 
solution for the American put options with stochastic volatility:  

1P 2P 3P

                        3 2
9 4
2 2SVP P P= − + 1

1 P                         (26) 

4. Numerical Analyses 

Numerical analyses are carried out on our model for stochastic volatility American put 
options ( ). The programs are written in C++ and MATLAB. Since the least-square 

Monte Carlo Simulation (LSM) (Longstaff and Schwartz (2001)) model is intuitive, 
accurate, efficient and convenient to apply, we set the values calculated by it as the 
benchmark. Then, we compared the difference between stochastic volatility model and 
constant volatility model.  

SVP

4.1 Benchmark and Setting of the Parameters 

In the LSM method, we unified in adopting 100,000 paths, repeating 30 times and using 
the trading day as steps. We have tried setting both quadratic polynomial and cubic 
polynomial for basis function . There is only a slight difference between the LSM 
value of both polynomials. However, the time consumed for cubic polynomial is much 
more than expected. Therefore, we considered until quadratic polynomial. The basis 
function 

f

f  used in LSM model is 2 2
0 1 2 3 4 5f a a S a S a a a Sυ υ υ= + + + + + ，

 are the parameters estimated by regression. The initial hypothesis of 

the parameters is set as: strike price 
0 1 2 3 4 5, , , , ,a a a a a a

K =50, risk-free interest rate r=5%, the rate of 
mean reversion =2, the long term variance κ θ =30%, volatility of variance σ =22.5% 
and variance υ =30%. The setting of the parameters follows the Heston (1993) paper. 
The correlation coefficient is divided into three conditions: ρ =0.5, ρ =0, ρ =-0.5. The 
stock price  is set as: in-the-money (ITM) = 45, at-the-money (ATM) = 50 and 
out-the-money (OTM) =55. 

S S S
S

We assume that if the relative error in price calculated by both  and LSM method is 

less than 1%, then  is of high accuracy. The relative error is calculated by first 
SVP

SVP
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using the value of  minus the value of LSM method, and the difference obtained 

would then be divided by the value of LSM method. 
SVP

Relative error = SV LSM

LSM

P P
P
−                    (27) 

In terms of calculating efficiency, we can use the time taken by the LSM method over 
the time taken by .  SVP

Efficiency =  
 

SV

LSM

P

CPU time
CPU time

                    (28) 

4.2 The Accuracy of the Analytical Solution Model 

Table 1 to Table 3 is the comparison between  and LSM method in ITM, ATM and 

OTM respectively. The parameters are the same as the initial setting. The option with 
the shortest time to maturity is one month, and the longest is three years. According to 
the tables, the relative errors shown are all less than 1%. This proves that our model is 
very accurate in different terms of options. Regardless of the value of correlation 
coefficient 

SVP

ρ , the value of the options increases with increasing time to maturity.  

  Table 1  Comparison between and LSM for in-the-money SVP

 

Note: std is the standard deviation. The results are shown in percentage. 
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Table 2  Comparison between and LSM for in-the-money SVP

 

Note: std is the standard deviation. The results are shown in percentage. 

Table 3  Comparison between and LSM for out-the-money SVP

 

Note: std is the standard deviation. The results are shown in percentage. 
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We illustrate the accuracy of  in ITM, ATM and OTM respectively in Figure 3. The 

setting of the parameters is the same as the initial setting except for the correlation 
coefficient 

SVP

ρ  which is set at 0.5. The time to maturity is from the sixth month to the 
ninth month. If we set the time to maturity from a month to a year, the figure would be 
too small for observation. It is seen that all the prices of  lie within the 95% 

confidence interval (C.I). This shows that our analytical solution is accurate. 
SVP

 

Figure 3: Accuracy of analytical solution 

In the speed of calculation, the average time taken for  is 6.109s while the average 

time taken for the LSM method varies under different conditions of moneyness. In the 
aspect of ITM where early exercise is more likely, the average time taken for a 
six-month option and a one-year option for LSM is about 745.453s and 1415.469s 
respectively. It is about 598.938s and 1177.109s for ATM. In OTM, it is about 444.859s 
and 936.031s due to the low possibility of exercising. Compared with the time taken in 
calculating a six-month option and a one-year option by the LSM method, the efficiency 
of  is 1.22E+02 and 2.32E+02 for ITM, 9.80E+01 and 1.93E+02 for ATM, and 

7.28E+01 and 1.53E+02 for OTM. Therefore, it is evident that the speed of the 
analytical solution is much faster than the LSM method. 

SVP

SVP

Table 4 shows the difference between the stochastic volatility model  and the 

constant volatility model  (Geske and Johnson (1984)). The range of variance 
SVP

GJP υ  

varies from 20% to 60%. The time to maturity is half a year. The rest of the parameters 
are the same as the initial setting.  
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Table 4   Comparison of difference between and under different variances SVP GJP

 

The results in Table 4 reveal that as variance υ  increases, the difference becomes 
greater, and they have verified our initial assumption that stochastic volatility model 
should be more realistic than constant volatility model. Compared with traditional 
constant volatility model, it is more practical and reasonable to adopt stochastic 
volatility model. 

5. Empirical Performance of Analytical Solution Model 

To test our analytical solution  in the real financial market application, we perform 

empirical studies. First, we decide on the type of derivatives to be evaluated. Next, we 
will do an estimation of the parameters. With that, we will verify if stochastic volatility 
model is superior to constant volatility model in pricing American put options in the 
actual market. 

SVP

5.1 Resource of Information 

Since our analytical solution model  evaluates on plain vanilla American put 

options with stochastic volatility, the empirical data used must comply with such 
condition. Warrants and 

SVP

options are similar as the two contractual financial instruments 
are discretionary and have expiration dates. Therefore, we decided to use the put 
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warrants in Taiwan financial market as our empirical study. Thirty put warrants are 
carefully chosen as samples. The time period selected for the put warrant contracts is 
from January 2006 to May 2009. Relevant information such as the past market prices 
and the past stock prices of the underlying assets corresponding to the warrants are 
collected from the Market Observation Post System (M.O.P.S) and Taiwan Economic 
Journal (TEJ). We used money market interest rate CP2-90 as the risk-free interest rate. 
Table 5 provides the information of the thirty put warrants in Taiwan financial market, 
including their warrant code, underlying stock number, and the time to maturity. 

Table 5   Information of Put Warrant in Taiwan Market 

 

5.2 Parameter Estimation 

To determine if the stochastic volatility model is superior to the constant volatility 
model, we compared  with the constant volatility model  proposed by Geske 

and Johnson (1984). Both models applied three-point Richardson extrapolation to 
approach. For , the most important parameter is the estimation of constant volatility. 

However, for , parameters such as the rate of mean reversion , the long term 

variance 

SVP GJP

GJP

SVP κ

θ , volatility of variance σ , current variance υ  and correlation coefficient 
ρ  are all considered crucial.. Therefore, we follow the concept and methods found in 
Bakshi, Cao and Chen (1997) paper to estimate these parameters. 
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NLet  be the number of the total put warrants. For each N 1 ,  . . . ,   n = . Let  be 

the time to maturity of the n -th put warrant, and  is the strike price. Let 
nT

nK

( )ˆ  ;n n nP T K be the market price (i.e., the observe price). ( ) ;n n nP T K  is the analytical 

solution price (i.e., the model price). The difference between  and  is a function 

of the values taken by 
n̂P nP

ν  and by { }, , ,κ θ σ ρΦ = . For each , define n

[ ] ( ) ( )ˆ,  ;  n n n n n nP T K P T Kε ν Φ ≡ − ; n              (29) 

Then, find ν  and parameter vector Φ , to solve  

[ ] 2

 , 1
min ,

N

n
n

SSE
ν

ε ν
Φ

=

≡ Φ∑                       (30) 

iteratively by using the Exhaustive Attack method until a set of parameters is obtained 
when  SSE  is at its smallest. The result will hence be the estimated parameters that 
are needed to be substituted into the models for the calculation of the put warrant prices.  

5.3 Empirical Performance 

We set the put warrant market prices obtained during large volume as the benchmark 
because the prices are more stable at that time. Then,  and  are applied to 

calculate the prices of the thirty put warrants respectively. Finally, root mean squared 
error (RMSE) of the prices obtained by each model will be calculated for comparison. 
The smaller the RMSE, the difference between the model price and the put warrant 
market price is smaller. 

SVP GJP

( ) ( )( )2

1

ˆ  ;  ;
N

n n n n n n
n

P T K P T K
RMSE

N
=

−
=
∑

              (31) 

Table 6 shows the market prices of the put warrants, the prices of the put warrants 
calculated by  and  and the respective RMSE obtained. The results indicate 

that the RMSE of the put warrant prices under  is 0.123 while the put warrant 

prices under  is 0.129. The RMSE obtained by  is smaller than that of , 

proving that stochastic volatility model is superior and efficient for the actual market. 

SVP GJP

SVP

GJP SVP GJP

 

 

 



 

Table 6   Empirical Performance of the Stochastic Volatility Model 

 

6. Conclusion 

Much of the literature on American options is evaluated under constant volatility. In this 
paper, we consider the harder problem of deriving an analytical solution by using barrier 
options to evaluate American put options with stochastic volatility. Our model proves to 
be accurate and efficient with relative error less than 1% in numerical analyses. From 
the empirical result, it is shown that stochastic volatility model indeed performs better 
than traditional constant volatility model in evaluating financial derivatives. In other 
words, stochastic volatility model can better illustrate the real market. Our analytical 
solution is practical because it can be applied broadly on any options that satisfy the 
conditions of plain vanilla American put.  

Besides pricing options, hedge ratio (Greeks) is another section that can be further 
explored. Theoretically, if differentiation is performed on our model, other analytical 
solutions for hedge ratio could also be derived. But still, we strive to develop the 
closed-form for American options with stochastic volatility in future studies. 

In addition, Black and Scholes (1973) model has treated shareholders’ equity as a 
standard call option with corporate value as the underlying asset. Black and Scholes 
(1973) assumed the call option to be path-independent. Instead of being influenced by 
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the trend of the asset value within the duration, the profit and loss (P&L) of the option 
will only be enhanced on the expiration date. Moreover, the equity value will become 
nothing if the corporate declares bankrupt when the corporate value is less than the 
liability during the monitoring period. To modify such unsuitable assumption, the equity 
value can be treated as a down-and-out barrier call option with corporate value as the 
underlying asset, while the bond value as the strike price. With that, the characteristic of 
path-dependent can then be captured. This is also another area we can investigate since 
we have already derived a discrete stochastic volatility barrier option model in this 
paper. We suggest that future research can be done by using the barrier options on the 
evaluation of the credit risks of a corporate. 
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