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Portfolio selection and trading by using 

multi-objective Genetic Algorithm 

 

Abstract 

  

The well-known mean-variance model cannot satisfy investors’ request for 

different investment preference and risk diversification. Consequently, we consider 

genetic algorithms for portfolio selections which consider risk preference including 

return, risk, liquidity, return distribution and transaction cost. Further, we try to 

improve the Markowitz model by multi-objective genetic algorithms (MOGAs). Why 

we used MOGAs? Because of MOGAs have considered all the objectives in the same 

time with solving quadric programming problem and optimized the solution in 

globally pareto optimal. Moreover, Multiobjective functions are prior than single 

objective because of solving the conflicts exquisitely in complex objections. 

Multiobjective genetic algorithms (MOGAs) can explain the trade-off between return 

and risk which behavior finance investigates. This paper proposed method which 

incorporate different risk measures, skewness, entropy, liquidity and transaction cost. 

A trading example is also illustrated to compare with the proposed method. On the 

basis of the numerical results, the method we proposed can provide a higher return on 

asset and having better risk diversifications. 
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Ⅰ. General Background  

The purpose of this study is to develop a model for portfolio optimization by 

using multi-objective genetic algorithm (MOGA). There are some improvements for 

the expanded model in portfolio selection and optimal portfolio construction, such as 

using entropy to measure the divergences avoiding the most criticisms in Markowitz’s 

mean-variance model which often extremely concentrated on a few assets and 

difficultly solving a large-scale quadratic programming problem and using covariance 

to represent the risk of interrelations under uncertainty, helping investors to control or 

hedge the risk in portfolio. 

Portfolio theory which is initially expounded by Markowitz (H. Markowitz, 1952; 

H. M. Markowitz, 1959), even though the proposed model turns into the base of 

portfolio theory, obviously it has some problems needed to improve. For instance, 

both of us want to find the portfolio with minimization of mean-risk and non-convex 

transaction cost, how to define the optimal transaction lot and the number of asset in 

portfolio, not often extremely concentrated on a few assets, difficulty solving a 

large-scale quadratic programming problem. Therefore, some improvements use 

genetic algorithms for handing preceding problems (J. S. Chen, Hou, Wu, & Chang 

Chien, 2009; C. C. Lin & Liu, 2008; Soleimani, Golmakani, & Salimi, 2009; Wilding, 

2003). 

Recently, multi-objective genetic algorithm (MOGA) is important and widely 

used in chemical engineering since it can have significant impacts on making the best 

choices in pareto optimal solutions (Dietz, Azzaro Pantel, Pibouleau, & Domenech, 

2008; Marseguerra, Zio, & Podofillini, 2004; Osman, Abo Sinna, & Mousa, 2005a). 

Statistical methods and data mining technique have been used for finding the best 

portfolio within maximize the return and minimize the risks which the risks are 

company risk and market risk (Chang, Yang, & Chang, 2009; P. C. Lin & Ko, 2009). 

In the past, when we encounter most of the tri-objective programming model problem, 

the most common way is making the bi-objective model to a single objective (J. S. 

Chen, et al., 2009; Wilding, 2003). However, the previous way can’t outperform 

optimal solutions because of it does not thinks all of objectives. Therefore, we need to 

use multi-objective genetic algorithm, it is much powerful than just thinking 

bi-objective algorithm (such like Markowitz’s mean-variance model) that assists us to 

construct a portfolio under the minimum or acceptable risk.            

Moreover, all the thing investors interested is portfolio risk and how to separate 

the risk or customized according investors’ preference. By this reason, this paper uses 

different risk measure methods such as covariance and semivariance for different 

investors’ preferences. In addition, we take liquidity into account which in securities 
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markets is a rapidly growing issue in both of the investors and financial researchers. 

Changing with time, liquidity would follow the market fluctuations, crises or bloom 

some kinds of real economic stress. For this reason, recently when talk about liquidity 

we would investigate the consequences of systematic fluctuations in liquidity. 

Ⅱ. Literature Review 

Portfolio theory and transaction cost 

In mean-variance model the problem is an optimization problem involving two 

criteria: first, the mean should be maximizes and the risk must be minimized. Hence, 

the performance of the mean-variance approach depends on the accurate forecast the 

return rate or risk (which can’t be obtained the accurate number, it just guesses). 

Therefore, some research (Z. Chen & Wang, 2008; Daníelsson, Jorgensen, Vries, & 

Yang, 2008; Hasuike, Katagiri, & Ishii, 2009; K. Y. Huang & Jane, 2009; Soleimani, 

et al., 2009) used different method for measured the risk (expected return, uncertainty 

risk and relation risk) in portfolio selection. That is to say, risk measure in portfolio 

selection is the most important things not which methods we used.    

Many results construct on the assumption of no transaction costs which initial 

investment required is linear function of the price. However, some research (Arnott & 

Wagner, 1990; Chellathurai & Draviam, 2007; Y. Fang, Lai, & Wang, 2006; Pelsser 

& Vorst, 1996) show the significant of transaction cost without transaction cost will 

bring no efficient portfolio selection and it is necessary to control transaction cost in 

optimal situation that can make investor or researcher have a better constrain of 

constructing portfolio with better improved investment performance. 

The other drawbacks of Markowitz mode are time consuming for computational 

difficulty in solving a large-scale quadratic programming problem and can’t consider 

all objectives in the same time. Therefore, some scholars introduce evolution 

algorithms for handling this issue (Chang, et al., 2009; J. S. Chen, et al., 2009; C. C. 

Lin & Liu, 2008). Moreover, for the purpose of considering all objective in the same 

time we also use multi-objective evolutionary algorithms based on genetic algorithms 

which calls multi-objective genetic algorithms (MOGA) for including transaction cost, 

return, risk, liquidity and entropy.   

Genetic algorithm (GA) in portfolio    

Genetic algorithm (GA) is a random searching optimization tool combined with 

mathematics and biology which can iterate the process to find the suitable generation 

by mutation and crossover. Genetic algorithm (GA) is a powerful and random 

optimized selection method, imitating the nature evolutionary and survival of fitness, 
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through competition and reserving suitable individual to gaining the optimal solution 

for constructing portfolios (J. S. Chen, et al., 2009; Wilding, 2003).          

Recently, some researches using genetic algorithm (GA), to improving portfolio 

selection and transaction problem. Portfolio selection optimal problems were hardly 

computation with quadratic or non-linear programming models (C. C. Lin & Liu, 

2008; Soleimani, et al., 2009).  

Furthermore, the proposed method can obtain nearly optimal and possible 

implemented solution within a short period closing to the efficient frontier. For coping 

with the classical portfolio problem of distributing capital to a set of securities in 

investment strategy offer aggressive strategies for effective ways(J. S. Chen, et al., 

2009; J. S. Chen & Lin, 2009). Some use GA to find portfolio optimization in 

measuring different level of risk through Markowitz model for efficient set and 

volatility forecasting (Chang, et al., 2009; P. C. Lin & Ko, 2009).    

In this study we can easily find the accuracy rate having some improvements 

than previous methods that are better in stock market forecasting. Furthermore, the 

multi-period can be the better way to realize the input factor of variable because 

training days is more than forecasting day which can be a better result of forecast 

according to stock market dynamic hardly to predict. 

Multi-objective Genetic algorithm (MOGA) 

A multi-objective GA (MOGA) is proposed to solve multi-objective problems 

integrated with continuous and discontinuous variables. Multi-objective problems are 

heavily discover in chemical engineering, ranging from applications of process design 

to determination of optimal operating conditions, and involve simultaneous 

optimization of several incommensurable and often competing objectives (Deb, 2001; 

Dedieu, Pibouleau, Azzaro Pantel, & Domenech, 2003; Dietz, et al., 2008; 

Marseguerra, et al., 2004).  

For instance, if we want to design a process, we want to normalize the 

formulation which minimize the investment cost or maximize the investment profits, 

but at the same time, we want to minimize the environmental efforts (stock market 

flexibility or each of the stock covariance). There are some advantages compared with 

single-objective optimization because it has some trade-off when consider all of 

constrains and the optimal solutions which is famous for Pareto-optimal solution (Deb, 

2001; Goel, et al., 2007; Suga, Kato, & Hiyama, 2009).  

What is the definition of Pareto optimal? Pareto efficient situations are those in 

which any (additional) change to make any person better off is impossible without 

making someone else worse off. Pareto optimal set (or Pareto optimal subset), 
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representing the best possible objective values, is the optimal solution that we can use 

to construct a surface according our interested objective. Moreover, in practice, we 

may not always be interested in finding the best solutions but investors’ preference 

(different objectives mean different customer spectrum). 

Most of the multi-objective optimization problems have many optimal solutions 

which are global optimal compared than single objective. Anyone of the optimal 

solution demonstrates different compromise among the objectives which we design or 

the restrictions should be considered (Abido, 2003; Gutiérrez-Antonio & 

Briones-Ramírez, 2009). Hence, Goel (2007) is interested in finding as many as 

possible Pareto optimal solutions for the sake of selecting a compromise that agree 

with investors’ preference. These solutions are no-more better than others in the 

search base when all other solution are considered. Dietz (2008) mentioned 

multi-objective genetic algorithm (MOGA) was able to finding the optimal solutions 

for each objective or constrains, which be regarded as Pareto optimal solution, and 

MOGA exactly can handle the various problems with flexibility and adaptability. 

MOGA can be used in safety system to optimize the solutions satisfying the other 

target and requirements, for an efficient search through the solution space using a 

multi-objective genetic algorithm which allowing to identify a set of Pareto optimal 

solutions providing the decision maker with the complete spectrum of optimal 

solutions with respect to the various targets, and the decision maker can select the best 

solutions conforming with the objectives (Busacca, Marseguerra, & Zio, 2001; 

Marseguerra, et al., 2004).     

 Why we should use multi-objective genetic algorithms? Because MOGA can 

considers many restrictions in the same time better than single objective in 

traditional linear searching space which cannot find better solutions if the searching 

space is non-linear. Furthermore, in the real world or the target function which we 

want to know, most of the optimization problems are multi-objective (Marseguerra, 

et al., 2004; Osman, Abo Sinna, & Mousa, 2005b; Suga, et al., 2009), where the 

restrictions (objectives) that should be taken into account simultaneously and 

independently, and those are helpful for managers to analyze the results that 

approximate the investors’ preference.          

Moreover, there are some investigations using genetic algorithms in solving the 

multi-objective resource allocation problems (MORAPs) with significant results. 

Those studies (Osman, et al., 2005a, 2005b) using genetic algorithm for dynamic 

programming (DP) to improve the computation efficient of select mathematical 

programming problem. Chen, Mcphee and Yeh (2007) points out that its simulation 

results with better solutions and closer to the true Pareto frontier which provides 

viable alternative to solve the problem to optimization. Ripon, Kwong and Man (2007) 
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using a modified multi-objective genetic algorithm indicate an optimal solution with 

Pareto-optimal front and better address the issues regarding convergence and diversity 

in multi-objective optimization. 

In addition, we take liquidity into account as well. Liquidity risk in securities 

markets is a rapidly growing issue in both of the investors and financial researchers. 

Furthermore, there are some interesting papers about liquidity (Gatev & Strahan, 2009; 

J. Huang & Wang, 2010; Johnson, 2006). The final goal is using newly mathematic 

algorithms (multi-objective genetic algorithms) to achieve an objective how to 

allocate the capital finding the suitable portfolio and maximizing the investor’s profits 

to increasing the most people welfare. 

 

Ⅲ.Method 

Research design 

 

Fig. 1 Steps for research process 

Genetic algorithm 

Genetic algorithm was beginning from Holland in the early 1970s and 

particularly his book Adaptation in Natural and Artificial Systems (1975). Genetic 

algorithm comes from Darwin’s theory, survival of fitness and natural selection which 

is an evolutionary algorithm that use techniques inspired by evolutionary biology such 

as selection, crossover and mutation, and used as simple models of evolutionary 

processes for solving the optimization problem.  
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Entropy 

Entropy has provided us with an estimate of information content and we may 

also want to compress it to the theory of lower bounds. We use entropy to measure the 

divergence of portfolio(S. C. Fang, Rajasekera, & Tsao, 1997; Kapur, 1990).    

Skewness 

Two kinds of skewness a distribution: 

1. Negative skew: The left tail is longer; the mass of the distribution is 

concentrated on the right of the figure. It has relatively few low values. The 

distribution is said to be left-skewed.  

2. Positive skew: The right tail is longer; the mass of the distribution is 

concentrated on the left of the figure. It has relatively few high values. The 

distribution is said to be right-skewed. 

 

Fig. 2. Skewness patterns 

Local pareto optimal vs. Globle pareto optimal  

   how to separate the final solutions to local pareto optimal or globlly pareto 

optimal solution is the most important thing. The following figures show how we 

make sure that final solution is local optimal or globle optimal (Deb, 2001). 

 

Fig.3 The ideal solution sets 

 

 

 

 

 

 

Fig.4 Globally optimal vs. Local optimal 

How can we make sure that our finding is the suitable solutions? According to 
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figure 3, the brown area is all of the possible solution set. But how can we pick up the 

most useful solution set to construct the pareto optimal line is the thing that we eager 

to know. f1 and f2 are two objectives which can make an solution set and from this 

solution set can obtain pareto optimal line(from )2()1( _  ztoz ) which line is under the 

most suitable trade-off situation. 

Data Collection Procedure  

The data, the data set is used in this study from Morgan Stanley Capital 

International (MSCI) and random selections from MSCI index. The samples we 

choose from MSCI Taiwan index are 165companies. 

 

Fig. 5. MOGAs internal process 

Ⅳ Empirical results 

The difference between ten, fifteen and twenty firms 

We follow those thinking steps in our study which used the medium value for 

deeply research. The next steps we compare 10, 15 and 20 firms with different 

skewness level, covariance, semi-variance (alfa 0.1 and 0.3) and entropy.    

 

Fig. 6a. Return and variance(10 firms 

under alfa0.1) 

 

Fig. 7a. Return and variance(15 firms 

under alfa0.1) 

 

Fig. 8a. Return and variance (20 firms 

under alfa0.1) 
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Fig.6b.Return and variance(10 firms 

under alfa0.3) 

 

Fig. 7b. Return and variance (15 firms 

under alfa0.3) 

 

Fig. 8b. Return and variance (20 firms 

under alfa0.3) 

From Figure 8a to 8b are ten firms with different investors’ preference and we 

used two type of measured variance to find different variances with different 

portfolios which process different characteristics.  

We can see the line with two objectives (return and covariance or return and 

semivariance) is more profits because of a few restrictions. Further, in ten firms return, 

covariance and skewness are suitable for investors to judge whether invest or not. 

Because of its achievement closed to barely two objectives. Moreover, objective with 

entropy seems with poor results because it’s a customized behavior (entropy would 

make investment not focus on a few assets). 

In this study, we focus on negative position skewness which presents higher risk 

and higher return. All we want to do are providing different objectives with different 

return and risk according investors’ preference. Risk attitude is people’s attitude to 

risk and we present the different type of risk preference in different risk attitude. For 

instance, from Fig.9 the risk aversion may choose three objectives (return, 

semivariance and entropy) and the risk lover may choose two objectives (return and 

covariance) according to their own preferences. 

From Figure 7a to 8b we find that with more objectives (or restrictions) will 

bring worst solutions but it corresponds to investors’ requests. Moreover, under our 

skewness assumptions semivariance (conservation index) is powerful than covariance 

so we can find the line with semivariance is lower than covariance.      

In sum, with different objectives correspond to different customized preferences. 

From upper figures, there are some common characteristics which with lesser 

objectives would bring more profits. However, when we add more objectives in our 

restrictions it would bring lesser profits. It is obviously that more restrictions make the 

searching space much smaller in a possible solution space. Therefore, different 

objectives mean different customer spectrum. Hence, our work is trying to maximize 
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the investors’ utility for separating the variance. Therefore, we offer some methods for 

investors to optimize their portfolio which are suitable for their preferences. 

 

Fig. 9 Type of risk preferences 

Observed the difference between two, three objectives  

In this section, we compare in different portfolios with two or three objectives. 

The following figures point out investors can follow up his personal preference for 

different degree of return (variance) which they pursuits. In our study, we show up ten, 

fifteen and twenty firms with two objectives (return covariance; return semivariance) 

or three objectives (return, covariance and skewness; return, covariance and entropy; 

return, semivariance and skewness; return, semivariance and entropy).      

 

 

Fig. 10a. Return and variance (two objectives) 

 

Fig. 10b. Return and variance (three objectives) 

The more firms in portfolio would bring the larger searching space so there are more 

solutions. In Fig. 10a, we can see the most profitable is portfolio which composed of 

twenty firms with two objectives and the next is fifteen firms with two objectives. 

There are some similarities, higher variance accompany with higher return. And ten 
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firms with two objectives have lower return and risk because of candidate can be 

selected in portfolio.    

It is obviously that considering more firms the solution space would be larger so 

that the return of twenty firms would be higher. Moreover, in Fig.10a we wanted to 

compare two methods of measured variance (covariance and semivariance) which 

they are famous for value at risk (VaR). From preceding figures, we can see more 

candidates (larger searching space) would obviously bring the differences between 

covariance and semivariance, but lesser candidates with smaller differences (smaller 

firms with smaller searching space.)    

In fig.10b we add skewness into our objective for comparison. There is 

something fun for twenty firms with semivariance, in higher risk level would bring 

higher return but in lower risk level would bring lower return. Further, twenty firms 

with covariance and fifteen firms almost have the same results. Moreover, ten firms 

have the same movement closely. 

Furthermore, we add entropy to our objective for compared with skewness and 

the results in entropy have the similar patterns. Moreover, the points of all efficient 

frontier line in our study we have listed in appendix Ⅰ. 

In sum up, the pattern of solutions is not covergent so even using single objective 

or aggregative weights the results are worse. Furthermore, the more candidates mean 

the larger searching space and higher profits. There are the similar patterns in 

different objectives. Therefore, we offer a novel method for customized portfolio 

selection by their risk preferences. 

Trading comparability 

In this section, we compared the trading profits under different fitness function 

and choosing the suitable fitness value as a foundation for later research development. 

Table 1. Trading comparability in different objectives and firms 

10 firms cov   alfa0.3   alfa0.1   alfa0.5   

 return cov 
return cov 

skewness 

return cov 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

Min 0.4382 0.5299 0.4259 0.4177 0.4404 0.4417 0.4641 0.5012 0.4521 0.4089 0.4172 0.4335 

max 0.9653 0.9653 0.9652 0.9645 0.9651 0.9650 0.965 0.9654 0.9652 0.9646 0.9652 0.9647 

mean 0.7560 0.7636 0.7673 0.7339 0.7728 0.7673 0.7571 0.7744 0.7746 0.7376 0.769 0.7833 
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15 firms cov   alfa0.3   alfa0.1   alfa0.5   

 return cov 
return cov 

skewness 

return cov 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

Min 0.5922 0.5967 0.5911 0.6182 0.5388 0.5947 0.5282 0.565 0.5789 0.5634 0.5671 0.5953 

max 0.9641  0.9644 0.965 0.9641 0.965 0.9645 0.9641 0.9645 0.9649 0.964 0.9645 0.9644 

mean 0.7384  0.8216 0.8172 0.7794 0.7812 0.8343 0.7755 0.8555 0.8034 0.7918 0.8156 0.7914 

 

20firms cov   alfa0.3   alfa0.1   alfa0.5   

 return cov 
return cov 

skewness 

return cov 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

return 

semi 

return 

semi 

skewness 

return 

semi 

entropy 

min  0.5613  0.7847  0.7837  0.7278 0.6634 0.7588 0.7083 0.6739 0.7009 0.7138 0.7402 0.7591 

Max 0.9665  0.9669  0.9667  0.9249 0.9261 0.9260 0.9261 0.9256 0.926 0.9261 0.9262 0.9259 

Mean 0.7567 0.8828 0.8740 0.8248 0.8230 0.8514 0.8052 0.7987 0.8575 0.799 0.815 0.8584 

From the preceding table, the improvements are easily observed under different 

objectives and firms. General speaking, the function with more objectives would 

conform with investors’ preference even not the best solutions. By this reason, we 

have some improvements in our research such under the same objectives but we have 

higher return or approximately return. Furthermore, we compared the general trading 

and our method that we make the return more stable not change so volatile and more 

profitable (general trading is 77% but in our method is from 70% to 85%). 

 

Ⅴ. Conclusions 

Multiobjective functions are prior than single objective because of solving 

the conflicts exquisitely in complex objections. Multiobjective genetic algorithms 

(MOGAs) can explain the trade-off between return and risk which behavior 

finance investigates (Doran, Peterson, & Wright, 2010; Frankfurter & McGoun, 

2002; Rossi, Schwaiger, & Winkler, 2009; Shefrin, 2006).        
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In this paper a tri-objective portfolio optimization problem with selection and 

evaluation has been proposed to deal with multi-objective models. The first two 

objectives were the variance (covariance and semivariance) and expected return as 

popular using in portfolio selection problems, and the third objectives (skewness 

and entropy) measure the different investors’ preference that how many units they 

should invest in the portfolio or how the divergence we can accept in the portfolio.  

We have combined with covariance, semivariance, skewness, liquidity, 

transaction cost and entropy for finding an approximation of fantastic trade-off 

between return, risk and investors’ preference of the portfolio. Furthermore, we 

also have visual comparisons that different firms between covariance and 

semivariance or same firms with combined objectives (add skewness or entropy) 

for generating surfaces with optimal arrangement in general. There are some 

return improvements in computation comparisons for proving our novel method 

with higher profitability and lower risk level under customer’ preference.        

       On the basis of the numerical results, the method we proposed can provide a 

higher return on asset and having a better risk diversification results. From the 

preceding numerical trading table, we have higher return in our portfolio than 

using simple Markowitz model based on genetic algorithms such as higher return 

in more objectives or approximately return with more objectives.  

   Future research can use the data in other countries compared with Taiwan’s 

and lager the composition of portfolio. Further, the later researcher can use the 

other method measures risk level for better evaluating the risk finding the better 

solutions. 
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Ⅶ AppendixⅠ 

Ten firms with two objective (return and covariance) 

0.0010  0.1116  0.1127  0.1100  0.1118  0.1110  0.1112  0.1108  0.1102  0.1097  

0.9910  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0013  0.0013  0.0013  

0.6467  0.0173  0.0493  0.0309  0.0149  0.0971  0.0319  0.0183  0.0164  0.0773  

0.8251  0.0064  0.0185  0.0109  0.0054  0.0629  0.0089  0.0066  0.0058  0.0498  

0.9357  0.0016  0.0030  0.0021  0.0018  0.0321  0.0017  0.0016  0.0015  0.0197  
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0.7801  0.0108  0.0224  0.0147  0.0091  0.0753  0.0185  0.0108  0.0102  0.0484  

0.2879  0.0816  0.0592  0.0446  0.1409  0.1215  0.0655  0.0474  0.0462  0.1053  

0.7116  0.0116  0.0496  0.0268  0.0087  0.0729  0.0147  0.0125  0.0107  0.0810  

0.8886  0.0037  0.0070  0.0046  0.0033  0.0506  0.0053  0.0036  0.0034  0.0305  

0.9488  0.0016  0.0029  0.0021  0.0016  0.0272  0.0018  0.0017  0.0015  0.0113  

0.2087  0.0877  0.0659  0.0430  0.1520  0.1525  0.0730  0.0481  0.0464  0.1226  

0.9128  0.0019  0.0038  0.0026  0.0021  0.0450  0.0020  0.0018  0.0016  0.0272  

0.6978  0.0150  0.0475  0.0262  0.0101  0.0786  0.0201  0.0158  0.0142  0.0746  

0.8078  0.0050  0.0309  0.0170  0.0051  0.0578  0.0064  0.0056  0.0044  0.0601  

0.1786  0.0833  0.0933  0.0825  0.0780  0.1260  0.0934  0.0831  0.0820  0.0998  

0.9059  0.0021  0.0054  0.0035  0.0023  0.0459  0.0023  0.0021  0.0018  0.0293  

0.9737  0.0012  0.0016  0.0014  0.0013  0.0107  0.0012  0.0014  0.0013  0.0070  

0.7909  0.0048  0.0366  0.0221  0.0044  0.0578  0.0043  0.0048  0.0038  0.0713  

0.4522  0.0338  0.0569  0.0453  0.0334  0.1563  0.0746  0.0339  0.0328  0.0808  

0.6078  0.0227  0.0490  0.0309  0.0174  0.1115  0.0405  0.0231  0.0218  0.0755  

0.8854  0.0032  0.0129  0.0078  0.0031  0.0450  0.0036  0.0033  0.0027  0.0329  

0.8243  0.0042  0.0306  0.0186  0.0039  0.0481  0.0038  0.0043  0.0034  0.0595  

0.6719  0.0216  0.0349  0.0218  0.0140  0.1007  0.0365  0.0221  0.0209  0.0558  

0.5543  0.0322  0.0521  0.0327  0.0209  0.1214  0.0503  0.0323  0.0313  0.0727  

0.2922  0.0740  0.0662  0.0469  0.1216  0.1315  0.0650  0.0457  0.0442  0.1128  

0.4059  0.0653  0.0495  0.0324  0.1128  0.1166  0.0544  0.0361  0.0348  0.0925  

0.4753  0.0399  0.0605  0.0356  0.0224  0.1456  0.0619  0.0402  0.0390  0.0798  

0.6248  0.0236  0.0411  0.0298  0.0206  0.1076  0.0455  0.0238  0.0229  0.0605  

0.4993  0.0331  0.0587  0.0374  0.0230  0.1415  0.0592  0.0333  0.0321  0.0825  

0.9910  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0013  0.0013  0.0013  

0.7467  0.0067  0.0486  0.0252  0.0056  0.0637  0.0071  0.0078  0.0058  0.0829  

0.3078  0.0735  0.0614  0.0395  0.1263  0.1360  0.0617  0.0411  0.0395  0.1132  

0.9860  0.0011  0.0012  0.0012  0.0011  0.0041  0.0011  0.0013  0.0013  0.0025  

0.8395  0.0038  0.0269  0.0164  0.0036  0.0466  0.0035  0.0039  0.0031  0.0535  

0.3165  0.0630  0.0763  0.0552  0.0462  0.1486  0.0819  0.0630  0.0619  0.0877  

0.3182  0.0724  0.0605  0.0389  0.1243  0.1342  0.0607  0.0405  0.0389  0.1115  

0.7621  0.0063  0.0439  0.0228  0.0053  0.0624  0.0066  0.0073  0.0054  0.0778  

0.7070  0.0135  0.0487  0.0260  0.0181  0.0698  0.0126  0.0111  0.0092  0.0840  

0.4345  0.0410  0.0640  0.0396  0.0256  0.1585  0.0706  0.0419  0.0399  0.0845  

0.9602  0.0015  0.0024  0.0018  0.0014  0.0201  0.0016  0.0016  0.0014  0.0086  

0.3549  0.0551  0.0740  0.0547  0.0441  0.1419  0.0761  0.0556  0.0540  0.0898  

0.6574  0.0205  0.0383  0.0246  0.0152  0.1043  0.0363  0.0207  0.0197  0.0633  
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0.8647  0.0041  0.0141  0.0083  0.0038  0.0527  0.0056  0.0042  0.0037  0.0392  

0.2526  0.0819  0.0648  0.0451  0.1398  0.1383  0.0686  0.0473  0.0457  0.1160  

0.9263  0.0018  0.0035  0.0024  0.0019  0.0383  0.0019  0.0018  0.0016  0.0212  

0.5235  0.0287  0.0533  0.0387  0.0261  0.1358  0.0590  0.0289  0.0277  0.0784  

0.9692  0.0013  0.0022  0.0017  0.0014  0.0125  0.0014  0.0015  0.0014  0.0084  

0.5865  0.0253  0.0508  0.0318  0.0184  0.1168  0.0440  0.0257  0.0244  0.0763  

0.7330  0.0105  0.0428  0.0244  0.0096  0.0716  0.0161  0.0110  0.0095  0.0715  

0.8080  0.0049  0.0309  0.0163  0.0043  0.0589  0.0051  0.0055  0.0042  0.0624  

0.8719  0.0035  0.0151  0.0091  0.0035  0.0487  0.0041  0.0037  0.0030  0.0375  

0.0010  0.1116  0.1127  0.1100  0.1118  0.1110  0.1112  0.1108  0.1102  0.1097  

0.0569  0.1052  0.1001  0.0920  0.1226  0.1222  0.1009  0.0939  0.0930  0.1132  

 

Ten firms with three objective (return, covariance and skewness) 

0.9910  0.0010  0.0010  0.0010  0.0020  0.0010  0.0010  0.0010  0.0010  0.0010  

0.1445  0.2203  0.1007  0.0643  0.0953  0.0198  0.0640  0.0955  0.0951  0.1005  

0.4260  0.0351  0.1344  0.0369  0.0346  0.0822  0.0345  0.0378  0.0146  0.1634  

0.1502  0.0682  0.1278  0.0709  0.0682  0.0993  0.1183  0.0697  0.1467  0.0801  

0.4572  0.0315  0.1263  0.0342  0.0313  0.0867  0.0613  0.0344  0.0230  0.1141  

0.9910  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  

0.8126  0.0086  0.0602  0.0093  0.0085  0.0328  0.0083  0.0096  0.0056  0.0450  

0.2756  0.0506  0.1235  0.0556  0.0506  0.1385  0.0804  0.0550  0.0972  0.0728  

0.3111  0.0510  0.1231  0.0534  0.0508  0.0863  0.0777  0.0532  0.0858  0.1071  

0.2659  0.1235  0.0997  0.0710  0.0548  0.0592  0.0661  0.0856  0.0813  0.0931  

0.6160  0.0244  0.0898  0.0248  0.0235  0.0546  0.0232  0.0255  0.0108  0.1075  

0.2142  0.1494  0.1101  0.0598  0.0767  0.0476  0.0698  0.0778  0.0912  0.1033  

0.6238  0.0225  0.0913  0.0242  0.0223  0.0572  0.0232  0.0242  0.0122  0.0992  

0.7669  0.0120  0.0677  0.0130  0.0119  0.0381  0.0117  0.0133  0.0070  0.0589  

0.6904  0.0170  0.0839  0.0183  0.0169  0.0486  0.0169  0.0187  0.0095  0.0799  

0.4379  0.0344  0.1288  0.0365  0.0339  0.0875  0.0351  0.0373  0.0184  0.1498  

0.7047  0.0162  0.0814  0.0175  0.0161  0.0470  0.0163  0.0177  0.0101  0.0734  

0.7781  0.0112  0.0684  0.0124  0.0113  0.0380  0.0112  0.0125  0.0086  0.0488  

0.5657  0.0248  0.1140  0.0267  0.0244  0.0719  0.0248  0.0270  0.0155  0.1054  

0.9045  0.0062  0.0204  0.0071  0.0064  0.0127  0.0107  0.0072  0.0051  0.0206  

0.2246  0.1900  0.0937  0.0611  0.0848  0.0218  0.0588  0.0875  0.0861  0.0917  

0.5351  0.0262  0.1234  0.0285  0.0259  0.0757  0.0262  0.0287  0.0156  0.1148  

0.9845  0.0014  0.0027  0.0014  0.0014  0.0021  0.0014  0.0014  0.0014  0.0024  
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0.5982  0.0245  0.0955  0.0261  0.0241  0.0630  0.0316  0.0265  0.0163  0.0943  

0.8585  0.0081  0.0309  0.0087  0.0086  0.0264  0.0082  0.0089  0.0083  0.0341  

0.8342  0.0080  0.0503  0.0086  0.0080  0.0292  0.0078  0.0089  0.0059  0.0396  

0.1968  0.0687  0.1129  0.0861  0.0684  0.0792  0.0959  0.0871  0.1213  0.0834  

0.6084  0.0222  0.0983  0.0240  0.0221  0.0627  0.0334  0.0243  0.0147  0.0899  

0.9105  0.0043  0.0273  0.0046  0.0043  0.0152  0.0060  0.0048  0.0039  0.0194  

0.3814  0.0372  0.1233  0.0430  0.0370  0.1344  0.1117  0.0431  0.0332  0.0559  

0.7948  0.0107  0.0596  0.0113  0.0105  0.0336  0.0103  0.0116  0.0061  0.0519  

0.8380  0.0077  0.0514  0.0082  0.0075  0.0282  0.0074  0.0084  0.0052  0.0385  

0.8827  0.0069  0.0270  0.0074  0.0068  0.0168  0.0135  0.0074  0.0047  0.0275  

0.3164  0.1051  0.1119  0.0490  0.0575  0.0828  0.0854  0.0609  0.0549  0.0762  

0.4963  0.0313  0.1141  0.0332  0.0306  0.0801  0.0358  0.0339  0.0182  0.1263  

0.3217  0.0501  0.1217  0.0525  0.0499  0.0852  0.0762  0.0523  0.0839  0.1063  

0.5529  0.0264  0.1081  0.0283  0.0261  0.0688  0.0336  0.0288  0.0144  0.1125  

0.8722  0.0083  0.0286  0.0082  0.0077  0.0184  0.0144  0.0084  0.0061  0.0284  

0.6706  0.0184  0.0873  0.0195  0.0182  0.0508  0.0181  0.0200  0.0092  0.0880  

0.8571  0.0076  0.0410  0.0081  0.0075  0.0239  0.0078  0.0083  0.0059  0.0335  

0.7180  0.0161  0.0771  0.0169  0.0150  0.0447  0.0161  0.0173  0.0111  0.0679  

0.1445  0.2203  0.1007  0.0643  0.0953  0.0198  0.0640  0.0955  0.0951  0.1005  

0.5885  0.0242  0.0976  0.0262  0.0239  0.0716  0.0258  0.0267  0.0171  0.0984  

0.9710  0.0021  0.0055  0.0020  0.0022  0.0056  0.0026  0.0021  0.0027  0.0044  

0.6379  0.0209  0.0904  0.0228  0.0208  0.0654  0.0238  0.0230  0.0166  0.0786  

0.8898  0.0065  0.0253  0.0070  0.0065  0.0158  0.0127  0.0070  0.0045  0.0257  

0.9282  0.0050  0.0173  0.0057  0.0052  0.0100  0.0047  0.0059  0.0049  0.0139  

0.3856  0.0380  0.1233  0.0431  0.0378  0.1259  0.0923  0.0431  0.0425  0.0683  

0.6794  0.0177  0.0855  0.0188  0.0176  0.0497  0.0173  0.0193  0.0087  0.0861  

0.9910  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0020  0.0010  

0.6453  0.0220  0.0855  0.0225  0.0212  0.0514  0.0210  0.0232  0.0101  0.0980  

0.2756  0.0506  0.1235  0.0556  0.0506  0.1385  0.0804  0.0550  0.0972  0.0728  

0.1502  0.0682  0.1278  0.0709  0.0682  0.0993  0.1183  0.0697  0.1467  0.0801  

Ten firms with three objective (return, covariance and entropy) 

0.9909  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  0.0010  

0.9909  0.0010  0.0010  0.0010  0.0010  0.0010  0.0020  0.0010  0.0010  0.0010  

0.0775  0.1783  0.0653  0.0654  0.1791  0.0622  0.0649  0.0679  0.1736  0.0649  

0.9179  0.0067  0.0083  0.0069  0.0099  0.0110  0.0106  0.0079  0.0088  0.0122  

0.6825  0.0318  0.0347  0.0274  0.0370  0.0385  0.0397  0.0313  0.0322  0.0452  

0.6111  0.0380  0.0416  0.0356  0.0451  0.0480  0.0478  0.0381  0.0420  0.0528  
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0.4611  0.0585  0.0569  0.0536  0.0619  0.0631  0.0609  0.0557  0.0625  0.0662  

0.0999  0.0987  0.0997  0.1014  0.1000  0.0999  0.0998  0.1019  0.1001  0.0995  

0.8610  0.0128  0.0137  0.0132  0.0167  0.0186  0.0175  0.0128  0.0163  0.0180  

0.5148  0.0535  0.0506  0.0478  0.0568  0.0564  0.0545  0.0496  0.0573  0.0591  

0.8759  0.0071  0.0106  0.0109  0.0157  0.0208  0.0178  0.0086  0.0150  0.0178  

0.9531  0.0035  0.0042  0.0040  0.0061  0.0070  0.0066  0.0037  0.0057  0.0064  

0.9676  0.0023  0.0029  0.0029  0.0041  0.0051  0.0044  0.0026  0.0037  0.0046  

0.5732  0.0448  0.0464  0.0417  0.0487  0.0496  0.0502  0.0442  0.0474  0.0541  

0.6984  0.0202  0.0284  0.0276  0.0353  0.0473  0.0410  0.0246  0.0379  0.0393  

0.6712  0.0295  0.0335  0.0296  0.0391  0.0438  0.0417  0.0303  0.0361  0.0458  

0.8759  0.0117  0.0123  0.0117  0.0151  0.0163  0.0153  0.0114  0.0147  0.0160  

0.6183  0.0365  0.0404  0.0349  0.0443  0.0480  0.0473  0.0370  0.0417  0.0516  

0.1872  0.0889  0.0888  0.0905  0.0885  0.0895  0.0892  0.0902  0.0984  0.0897  

0.7134  0.0192  0.0260  0.0264  0.0354  0.0450  0.0388  0.0223  0.0342  0.0394  

0.8880  0.0102  0.0112  0.0110  0.0134  0.0148  0.0140  0.0105  0.0133  0.0141  

0.2128  0.1251  0.0680  0.0684  0.1272  0.0679  0.0689  0.0696  0.1242  0.0688  

0.9099  0.0068  0.0087  0.0076  0.0110  0.0129  0.0120  0.0080  0.0100  0.0132  

0.9297  0.0080  0.0067  0.0062  0.0093  0.0080  0.0084  0.0064  0.0085  0.0086  

0.6028  0.0416  0.0416  0.0372  0.0470  0.0475  0.0468  0.0393  0.0453  0.0511  

0.8438  0.0121  0.0147  0.0127  0.0198  0.0223  0.0209  0.0133  0.0169  0.0239  

0.9370  0.0072  0.0068  0.0066  0.0071  0.0070  0.0071  0.0066  0.0076  0.0070  

0.8502  0.0114  0.0139  0.0128  0.0194  0.0224  0.0198  0.0118  0.0175  0.0214  

0.3220  0.0740  0.0743  0.0732  0.0741  0.0751  0.0753  0.0733  0.0835  0.0759  

0.6860  0.0222  0.0299  0.0290  0.0367  0.0481  0.0421  0.0263  0.0392  0.0407  

0.3305  0.0732  0.0733  0.0722  0.0733  0.0742  0.0743  0.0723  0.0826  0.0749  

0.3794  0.0682  0.0686  0.0695  0.0691  0.0688  0.0689  0.0700  0.0695  0.0687  

0.2016  0.0867  0.0877  0.0888  0.0878  0.0892  0.0888  0.0890  0.0928  0.0885  

0.2860  0.0779  0.0789  0.0801  0.0795  0.0796  0.0794  0.0804  0.0797  0.0792  

0.8035  0.0110  0.0168  0.0171  0.0248  0.0331  0.0279  0.0136  0.0238  0.0282  

0.7828  0.0149  0.0200  0.0198  0.0267  0.0335  0.0292  0.0174  0.0255  0.0301  

0.7688  0.0200  0.0222  0.0197  0.0289  0.0325  0.0301  0.0195  0.0261  0.0329  

0.4740  0.0570  0.0568  0.0561  0.0592  0.0595  0.0590  0.0564  0.0626  0.0603  

0.8957  0.0086  0.0099  0.0086  0.0132  0.0144  0.0141  0.0091  0.0113  0.0157  

0.4897  0.0409  0.0573  0.0504  0.0461  0.0712  0.0654  0.0544  0.0754  0.0497  

0.3969  0.0648  0.0656  0.0640  0.0668  0.0679  0.0678  0.0647  0.0726  0.0697  

 


